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Mean-field interacting particle system

Consider the following interacting particle system:

dX i ,N
t = bt(X i ,N

t , LN
t )dt + σt(X i ,N

t , LN
t )dB i

t , 1 ≤ i ≤ N

LN
t := 1

N

∑N
i=1 δX i,N

t
empirical measure

coefficients

b : R+ × Rd × P(Rd )→ Rd

σ : R+ × Rd × P(Rd )→ Rd×m,

where P(Rd ) is the space of all probability measures on
(Rd ,B(Rd )), endowed with the weak convergence topology.

B1, · · · ,BN independent Brownian motions taking values in
Rd

X 1,N
0 , · · · ,X N,N

0 i.i.d., and independent of the Brownian
motions B1, · · · ,BN



Applications

Mean-field interacting particle systems have been extensively
studied in recent 40 years due to their wide range of applications in
several fields including physics, chemistry, biology, economics,
mean-field games, financial mathematics, social science, machine
learning and so on.

Physics, Chemistry: ions and electrons in plasmas, molecules
in a fluid, galaxies in large scale cosmological models

Biology: collective behaviors, neuronal network

Economics, finances and Social Science: opinion dynamics,
consensus model, mean field games

Machine learning: deep learning, artificial neural network,
distribution sampling algorithm, stochastic algorithm

etc...



Mean field limit - McKean-Vlasov SDE

Self-interacting nonlinear diffusion or distribution dependent SDE:

dXt = bt(Xt , µt)dt + σt(Xt , µt)dBt

Xt : state variable with values in Rd

µt : law of Xt

(Bt)t≥0: Brownian motion with values in Rm

coefficients

b : R+ × Rd × P(Rd )→ Rd

σ : R+ × Rd × P(Rd )→ Rd×m,

where P(Rd ) is the space of all probability measures on
(Rd ,B(Rd )), endowed with the weak convergence topology.



Known results

Kac (1956,1958), stochastic toy model

McKean (1966,1967), non-linear parabolic equations

Existence and uniqueness of the solutions, see F.Y. Wang
(2018-2021), Röckner et al. (2019-2021), Li-Li-Xie (2021),
Zhao (2021), Buckdahn-Li-Peng-Rainer (2017),...

Propagation of chaos: as N →∞. McKean (1986),
Sznitman(1991), Malrieu (2001,2003), Jabin-Wang (2018),
Durmus et al. (2020), Liu-Wu-Zhang (2021), Lacker (2021),
Delarue-Tse (2021), Guillin et al. (2021), Bao-Huang (2021),
Hao-Rockner-Zhang (2022), etc.

Long time behaviors: as t →∞.
Carrillo-McCann-Villani (2003), Eberle et al. (2016),
Luo-Wang (2016), Liu-Wu-Zhang (2021), etc.

Functional inequalities:
Malrieu (2001,2003), Guilin-Liu-Wu-Zhang (2022 AAP),
Wang et al. (Harnack inequalities) etc.



Known results

Large and moderate deviation principles:

Empirical measure: LN
t := 1

N

∑N
i=1 δX i,N

t
: Léonard (1987 SPA) ,

S. Feng (1994), Dupuis et al. (2015→ 2021 EJP), J. Reygner
(2018), Liu-Wu (2020 SPA),
Weak interacting diffusions: Dawson-Gärtner (1987),
Budhiraja-Dupuis-Fischer (2012), Hoeksema et al. (2020)
Freidlin-Wentzell type LDP and MDP for McKean-Vlasov
SDEs: Herrmann et al. (2008), Dos Reis et al. (2019),
Yuan-suo (2021), etc.

Central limit theorem Wang-Zhao-Zhu (2021), Yuan-Suo
(2021)



Known results - McKean-Vlasov SDEs with jumps

Liang-Majak-Wang (2021 AIHP) Exponential ergodicity for
SDEs and McKeanCVlasov processes with Lévy noise.

Jourdain-Méléard-Woyczynski (2008 ALEA), Nonlinear SDEs
driven by Lévy processes and related PDEs.

T. Hao and J. Li (2016 NoDEA), Mean-field SDEs with jumps
and nonlocal integral-PDEs.

J. Li (2018SPA), Mean-field forward and backward SDEs with
jumps and associated nonlocal quasi-linear integral-PDEs.

Y. Song (2020 JTP), Gradient estimates and exponential
ergodicity for mean-field SDEs with jumps.

Agarwal-Pagliarani (2021 Stochastics), A Fourier-based
Picard-iteration approach for a class of McKean-Vlasov SDEs
with Lévy jumps.



Known results - McKean-Vlasov SDEs with jumps

Andreis-D.Pra-Fischer (2018 SAA), McKean-Vlasov limit for
interacting systems with simultaneous jumps.

Mehri-Scheutzow-Stannat-Zangeneh (2020 AAP),
Propagation of chaos for stochastic spatially structured
neuronal networks with fully path dependent delays and
monotone coefficients driven by jump diffusion noise.

Erny-Löcherbach-Loukianova (2021 EJP), Conditional
propagation of chaos for mean field systems of interacting
neurons.

Erny-Löcherbach-Loukianova (2022+ AAP), Strong error
bounds for the convergence to its mean field limit for systems
of interacting neurons in a diffusive scaling.



McKean-Vlasov SDEs with jumps

Model:

dX ε
t =b(t,X ε

t , µ
ε
t )dt +

√
εσ(t,X ε

t , µ
ε
t )dW (t)

+ ε

∫
Z

G (t,X ε
t−, µ

ε
t , z)Ñε−1

(dz ,dt), t ∈ [0,T ], ε ∈ (0, 1], (1)

with initial data X ε
0 = x .

µεt is the law of X ε
t ;

W is a (K -cylindrical) Brownian motion (BM in short);

N is a PRM on [0,T ]× Z × R+ with intensity measure
LebT ⊗ ν ⊗ Leb∞, W and N are mutually independent;

Nε−1

is a Poisson random measure (PRM in short) on [0,T ]× Z
with a σ-finite intensity measure ε−1LebT ⊗ ν;

Ñε−1

([0, t]× B) = Nε−1

([0, t]× B)− ε−1tν(B), ∀B ∈ B(Z ) with
ν(B) <∞, is the compensated PRM;

Nϕ((0, t]× B) =
∫

(0,t]×B×R+
1[0,ϕ(s,z)](r) N(ds,dz ,dr).



Asymptotic behaviors under small perturbation

As ε→ 0, the solution X ε of (1) will tend to the solution of the
following deterministic equation:

dX 0
t = b(t,X 0

t , µ
0
t )dt, t ∈ [0,T ], (2)

with initial data X 0
0 = x .

X 0 := {X 0
t , t ∈ [0,T ]},

µ0
t is the law of X 0

t , i.e. µ0
t = δX 0

t
.

Let

Y ε
t =

X ε
t − X 0

t√
ελ(ε)

, t ∈ [0,T ],

Large deviation principle (LDP): λ(ε) = 1/
√
ε;

Central limit theorem (CLT): λ(ε) = 1;

Moderate deviation principle (MDP):

λ(ε)→ +∞,
√
ελ(ε)→ 0 as ε→ 0.
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Rate function

Let us recall the definition of a rate function and LDP.

Assume Y ε = {Y ε(t), t ∈ [0,T ]} ∈ D([0,T ],H) P-a.s.

H: a separable Hilbert space,
D([0,T ],H): all càdlàg functions with the Skorokhod topology.

Definition (Rate function)

A function I : D([0,T ],H)→ [0,∞] is called a rate function on
D([0,T ],H), if for each M <∞, the level set

{x ∈ D([0,T ],H) : I (x) ≤ M}

is a closed subset of D([0,T ],H).
I is said to be good if the level set is compact.



Large deviation principle

Y ε(t) =
X ε(t)− X 0(t)
√
ελ(ε)

, t ∈ [0,T ],

Definition (Large deviation principle)

{Y ε}ε>0 is said to satisfy a LDP on D([0,T ],H) with speed 1
λ2(ε)

and rate function I

if the following two claims hold.

(a) (Upper bound) For each closed subset C of D([0,T ],H),

lim sup
ε→0

1

λ2(ε)
log P (Y ε ∈ C) ≤ − inf

x∈C
I (x).

(b) (Lower bound) For each open subset O of D([0,T ],H)

lim inf
ε→0

1

λ2(ε)
log P (Y ε ∈ O) ≥ − inf

x∈O
I (x).

Large deviation principle(LDP): λ(ε) = 1√
ε

;

Moderate deviation principle(MDP):

λ(ε)→ +∞,
√
ελ(ε)→ 0 as ε→ 0.



Existing results

Freidlin-Wentzell Large deviation principles for McKean-Vlasov
SDEs driven by Brownian motion:

Herrmann, Imkeller, and Peithmann (2008 AOAP), Large
deviations and a Kramers’ type law for self-stabilizing
diffusions.
Dos Reis, Salkeld, and Tugaut (2019 AOAP), Freidlin-Wentzell
LDPs in path space for McKean-Vlasov equations and the
functional iterated logarithm law.
Y. Suo and C. Yuan (2021 Acta. Appl. Math.), Central Limit
Theoremand Moderate Deviation Principle for McKean-Vlasov
SDEs.
Adams, Dos Reis, Ravaille, Salkeld and Tugaut (2020 arxiv),
Large Deviations and Exit-times for reflected McKean-Vlasov
equations with self-stabilizing terms and superlinear drifts.
W. Liu and L. Wu (2020 SPA), Large deviations for empirical
measures of mean-field gibbs measures.

With jumps: Y. Cai, J. Huang and V. Maroulas (2015 Statist. Probab. Lett.),
Large deviations of mean-field stochastic differential equations with jumps.



Existing results - continued

Consider

dX ε(t) =b(t,X ε(t), µεt )dt +
√
εσ(t,X ε(t), µεt )dW (t), t ∈ [0,T ], ε ∈ (0, 1],

(4)

with initial data X ε(0) = x .

µεt is the law of X ε(t),

W is a Brownian motion (BM in short).

As ε→ 0,

dX 0(t) =b(t,X 0(t), µ0
t )dt, t ∈ [0,T ], (5)

with initial data X 0(0) = x .

µ0
t is the law of X 0(t).

Set

dY ε(t) =b(t,Y ε(t), µ0
t )dt +

√
εσ(t,Y ε(t), µ0

t )dW (t), t ∈ [0,T ], ε ∈ (0, 1],
(6)

with initial data Y ε(0) = x .



Existing results - continued

dX ε(t) = b(t,X ε(t), µεt)dt +
√
εσ(t,X ε(t), µεt)dW (t)

dY ε(t) = b(t,Y ε(t), µ0
t )dt +

√
εσ(t,Y ε(t), µ0

t )dW (t)

Strategies:

Step 1: LDP for Y ε as ε→ 0

Discretization, approximation and exponential equivalence
arguments (requiring strong conditions):
Herrmann-Imkeller-Peithmann (2008), Reis-Salkeld-Tugaut
(2019), Adams-Reis-Ravaille-Salkeld-Tugaut (2020)
Weak convergence method: Y. Suo and C. Yuan (2021, with
Lion’s derivatives)

Step 2: X ε and Y ε are exponentially equivalent as ε→ 0.



Existing results - continued

dX ε(t) = b(t,X ε(t), µεt)dt +
√
εσ(t,X ε(t), µεt)dW (t)

Stronger conditions on the coefficients are required to use
exponential approximation arguments.

Herrmann-Imkeller-Peithmann (2008): Additive noise
Reis-Salkeld-Tugaut (2019): Multiplicative noise

b: monotone growth condition, locally Lipschitz with
polynomial growth in x , Lipschitz in µ; σ: bounded Lipschitz
there exists β ∈ (0, 1] such that

|σ(s, y , µ)−σ(t, y , µ)| ≤ L|s−t|β , |b(s, y , µ)−b(t, y , µ)| ≤ L|s−t|β .

Adams-Reis-Ravaille-Salkeld-Tugaut (2020)
reflected McKean-Vlasov SDEs, multiplicative noise
there exists β ∈ (0, 1] such that

|σ(s, y , µ)− σ(t, y , µ)| ≤ L|s − t|β .

Y. Suo and C. Yuan (2021)



Weak convergence method

The exponential approximation arguments are not suitable
to deal with SDE with jumps and SPDEs.
The weak convergence method is proved to be a powerful
tool to establish large and moderate deviation principles for
various dynamical systems driven by Gaussian noise and/or
PRM.
The aim: Fully apply the weak convergence method to
establish large and moderate deviation principles for
McKean-Vlasov SDEs/SPDEs with jumps/delay/memory...

X A. Budhiraja, P. Dupuis, A. Ganguly (2016), Moderate deviation principles for stochastic differential
equations with jumps. Ann. Probab. 44, 1723-1775.

X A. Budhiraja, P. Dupuis, and V. Maroulas, (2011) Variational representations for continuous time
processes. Ann. Inst. Henri Poincaré, Probab. Stat., 47, 725-747.

X A. Budhiraja, P. Dupuis, (2000) A variational representation for positive functionals of an infinite
dimensional Brownian motion. Probab. Math. Stat. 20, 39-61.

X A. Budhiraja, P. Dupuis, V. Maroulas,(2008) Large deviations for infinite dimensional stochastic dynamical
systems continuous time processes. Ann. Probab. 36 1390-1420.
A. Budhiraja, J. Chen, and P. Dupuis, (2013) Large deviations for stochastic partial differential equations
driven by a Poisson random measure, Stoch. Proc. Appl., 123, 523-560.
Z. Dong, J. Xiong, J. Zhai, T. Zhang, (2017) A moderate deviation principle for 2-D stochastic
Navier-Stokes equations driven by multiplicative Lévy noises. J. Funct. Anal., 272, 227-254.
Z. Dong, J. Wu, R. Zhang and T. Zhang, (2020) Large deviation principles for first-order scalar
conservation laws with stochastic forcing. Ann. Appl. Probab., 30, no. 1, 324-367.
J. Ren and X. Zhang, (2008) Freidlin-Wentzell’s large deviations for stochastic evolution equations. J.
Funct. Anal., 254, 3148-3172.



Weak convergence method

Consider large deviation principles for X ε as the parameter ε tends
to 0,

dX ε(t) =b(t,X ε(t), µεt )dt +
√
εσ(t,X ε(t), µεt )dW (t), t ∈ [0,T ], ε ∈ (0, 1],

with initial data X ε(0) = x .

µεt is the law of X ε(t),

W is a Brownian motion (BM in short).

The basic step is to find the mapping Γε such that

X ε = Γε(W (·)),

and then to identify the correct equation satisfied by

X ε,hε := Γε
(

W (·) +
1√
ε

∫ ·
0

ḣε(s)ds

)
.
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.



Weak convergence method

Set

dX 0(t) =b(t,X 0(t), µ0
t )dt, t ∈ [0,T ], (7)

with initial data X 0(0) = x .

X 0 := {X 0(s), s ∈ [0,T ]},
µ0

t is the law of X 0(t).

X 0,h := Γ0
(∫ ·

0
ḣ(s)ds

)
is the solution to the following controlled ODE:

dX 0,h(t) = b(t,X 0,h(t), µ0
t )dt + σ(t,X 0,h(t), µ0

t )ḣ(t)dt, t ∈ [0,T ], (8)

where µ0
t is the distribution of X 0(t).



Weak convergence method

For each f ∈ L2([0,T ],K), we introduce the quantity

Q1(f ) :=
1

2

∫ T

0

‖f (s)‖2
K ds,

and for each m > 0, denote

Sm
1 :=

{
f ∈ L2([0,T ],K) : Q1(f ) ≤ m

}
.

Equipped with the weak topology, Sm
1 is a compact subset of L2([0,T ],K).

{ḣn, n ≥ 1} ∈ Sm
1 and ḣ ∈ Sm

1 :

ḣn → ḣ in Sm
1 .

Γ0
(∫ ·

0
ḣn(s)ds

)
→ Γ0

(∫ ·
0

ḣ(s)ds
)

in D([0,T ],H).



Weak convergence method

For any m ∈ (0,∞), let Sm
1 be a space of stochastic processes on Ω defined by

Sm
1 := {ϕ : [0,T ]× Ω→ K : F-predictable andϕ(·, ω) ∈ Sm

1 for P-a.e. ω ∈ Ω}.

{ḣε, ε > 0} ⊂ Sm
1 and ḣ ∈ Sm

1 :

lim
ε→0

ḣε = ḣ in law as Sm
1 -valued random elements

Γε(W + 1√
ε

∫ ·
0

ḣε(s)ds)→ Γ0
(∫ ·

0
ḣ(s)ds

)
in law as D([0,T ],H)-valued

random elements



Weak convergence method

We only need to check

Γ0
(∫ ·

0
ḣn(s)ds

)
→ Γ0

(∫ ·
0

ḣ(s)ds
)

in D([0,T ],H).

Γε(W + 1√
ε

∫ ·
0

ḣε(s)ds)− Γ0(
∫ ·

0
ḣε(s)ds)→ 0 in probability as

D([0,T ],H)-valued random elements

A. Matoussi, W. Sabbagh, and T. Zhang, Large deviation principle of
obstacle problems for Quasilinear Stochastic PDEs. Appl. Math. Optim.,
https://doi.org/10.1007/s00245-019-09570-5.

W. Hong, S. Li, W. Liu, Large deviation principle for McKean-Vlasov
Quasilinear stochastic stochastic evolution equations, arXiv:2103.11398



Controlled McKean-Vlasov SDE

Assume that there is a unique strong solution X ε.

dX ε(t) =b(t,X ε(t), µεt )dt +
√
εσ(t,X ε(t), µεt )dW (t), t ∈ [0,T ], ε ∈ (0, 1],

with initial data X ε(0) = x . µεt is the law of X ε(t).
Then, there exists a measurable map Γε such that the solution X ε can be
represented as

X ε = Γε(W (·)).

X ε,hε := Γε
(

W (·) + 1√
ε

∫ ·
0

ḣε(s)ds
)

??? is the solution to the following

controlled SDE:

dX ε,hε(t) = b(t,X ε,hε(t), µε,h
ε

t )dt +
√
εσ(t,X ε,hε(t), µε,h

ε

t )dW (t)

+σ(t,X ε,hε(t), µε,h
ε

t )ḣε(t)dt, t ∈ [0,T ], (9)

where µ
ε,hεt
t is the distribution of X ε,hε(t).

Y. Cai, J. Huang and V. Maroulas, Large deviations of mean-field stochastic

differential equations with jumps. Statist. Probab. Lett., 96 (2015), 1-9.
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(

W (·) + 1√
ε

∫ ·
0
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)

is the solution to the following
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Controlled McKean-Vlasov SDE: example

Consider the following simple one dimensional MVSDE:

X ε(t) = x0 +

∫ t

0

E(X ε(s))ds +
√
εW (t). (11)

There exists a map Γε such that X ε = Γε(W ).

Y ε := Γε(W + 1√
ε

∫ ·
0

ḣε(s)ds)?:

E(X ε(t)) = x0 +
∫ t

0
E(X ε(s))ds. Hence E(X ε(t)) = x0et .

Thus

X ε(t) = x0 +

∫ t

0

x0esds +
√
εW (t) = Γε(W )(t). (12)

Therefore, Y ε is the solution of the equation:

Y ε(t) =x0 +

∫ t

0

x0esds +
√
εW (t) +

∫ t

0

ḣε(s)ds

=x0 +

∫ t

0

E(X ε(s))ds +
√
εW (t) +

∫ t

0

ḣε(s)ds. (13)

Y ε does NOT satisfy the following controlled SDE:

Y ε(t) = x0 +

∫ t

0

E(Y ε(s))ds +
√
εW (t) +

∫ t

0

ḣε(s)ds. (14)



General framework

We consider the following general distribution-dependent SDEs with jumps

dY (t) = b(t,Y , J)dt + σ(t,Y , J)dW (t) +

∫
Z

G(t,Y , J, z)Ñ1(dz , dt) (15)

with initial value Y (0) = h ∈ H.
Remark: This abstract formulation of SDEs (15) is general enough to cover
many types of SPDEs, such as SPDEs with delay, DDSPDEs, MKSDEs, etc.
We now introduce some definitions related to the solutions of (15).

Definition

For a fixed J ∈ Pr(D([0,T ],H)), Y is called a solution of (15) if

(a) Y = {Y (t), t ∈ [0,T ]} is an adapted process,

(b)
∫ T

0
‖b(t,Y , J)‖Edt +

∫ T

0
‖σ(t,Y , J)‖2

L2
dt +∫ T

0

∫
Z
‖G(t,Y , J, z)‖2

Hν(dz)dt <∞, P-a.s.,

(c)

Y (t) =h +

∫ t

0

b(s,Y , J)ds +

∫ t

0

σ(s,Y , J)dW (s)

+

∫ t

0

∫
Z

G(s,Y , J, z)Ñ1(dz ,ds), t ∈ [0,T ], P-a.s.



General framework - continued

Definition (Pathwise uniqueness)

The pathwise uniqueness is said to hold for (15) with the fixed
J ∈ Pr(D([0,T ],H)), if for any two solutions Y1 and Y2 of (15),

Y1(t) = Y2(t), t ∈ [0,T ], P-a.s.

Now consider the McKean-Vlasov equation:

dX (t) =b(t,X , Law(X ))dt + σ(t,X , Law(X ))dW (t)

+

∫
Z

G(t,X , Law(X ), z)Ñ1(dz , dt) (16)

X = {X (t)}0≤t≤T is a solution to equation (16) if X is a solution of (15)
with J = Law(X ).

The pathwise uniqueness is said to hold if for any two solutions X1 and
X2 of (16),

X1(t) = X2(t), t ∈ [0,T ] P-a.s.,

and hence Law(X1) = Law(X2).



General framework - continued

Theorem

Fix J ∈ Pr(D([0,T ],H)). Suppose that Y is a solution of (15), and pathwise
uniqueness holds with the fixed J. Then there exists a unique map ΓJ such that

Y = ΓJ (W ,N1).

Moreover for any m ∈ (0,∞) and u = (φ, ψ) ∈ Sm
1 × Sm

2 , let

Y u := ΓJ (W +

∫ ·
0

φ(s)ds,Nψ), (17)

then we have

(a) Y u = {Y u(t), t ∈ [0,T ]} is an adapted process,

(b) ∫ T

0

‖b(t,Y u, J)‖Edt +

∫ T

0

‖σ(t,Y u, J)‖2
L2
dt +

∫ T

0

‖σ(t,Y u, J)φ(t)‖Hdt

+

∫ T

0

∫
Z

‖G(t,Y u, J, z)‖2
Hψ(t, z)ν(dz)dt +

∫ T

0

∫
Z

‖G(t,Y u, J, z)(ψ(t, z)− 1)‖Hν(dz)dt

<∞, P-a.s.,



General framework - continued

(c) as a stochastic equation on E , Y u satisfies

Y u(t) =h +

∫ t

0

b(s,Y u, J)ds +

∫ t

0

σ(s,Y u, J)dW (s) +

∫ t

0

σ(s,Y u, J)φ(s)ds

+

∫ t

0

∫
Z

G(s,Y u, J, z)
(

Nψ(dz , ds)− ν(dz)ds
)
, t ∈ [0,T ], P-a.s.

(18)

Moreover, Y u is the unique stochastic process satisfying (a)-(c).

Remark: Although the claim in previous Theorem is not surprising, its rigorous

proof requires the careful use of the Girsanov Theorem for the mixture of

Brownian motion and Poisson random measures.



General framework - continued

Theorem

Assume that X is a solution of (16) with initial value X (0) = h ∈ H, and that
the pathwise uniqueness holds for (15) with J = Law(X ).
Then

X = ΓLaw(X )(W ,N1)

where ΓLaw(X ) is the map ΓJ with J = Law(X ).
Moreover for any m ∈ (0,∞) and u = (φ, ψ) ∈ Sm

1 × Sm
2 , let

X u := ΓLaw(X )(W +
∫ ·

0
φ(s)ds,Nψ), then we have

(a) X u = {X u(t), t ∈ [0,T ]} is an adapted process,

(b)

X u(t) =h +

∫ t

0

b(s,X u, Law(X ))ds +

∫ t

0

σ(s,X u, Law(X ))dW (s)

+

∫ t

0

σ(s,X u, Law(X ))φ(s)ds +

∫ t

0

∫
Z

G(s,X u, Law(X ), z)Ñψ(dz , ds)

+

∫ t

0

∫
Z

G(s,X u, Law(X ), z)
(
ψ(s, z)− 1

)
ν(dz)ds, t ∈ [0,T ], P-a.s.(19)



Applications: conditions for LDP

X ε(t) =h +

∫ t

0

bε(s,X ε(s), Law(X ε(s)))ds +
√
ε

∫ t

0

σε(s,X ε(s), Law(X ε(s)))dW (s)

+ ε

∫ t

0

∫
Z

Gε(s,X ε(s−), Law(X ε(s)), z)Ñε−1

(dz , ds), t ∈ [0,T ],

We assume that (A0) For any ε > 0, there exists a unique solution X ε.
There are L > 0 and q ≥ 1 such that for each t ∈ [0,T ],

(A1)

〈x − x ′, b(t, x , µ)− b(t, x ′, µ)〉 ≤ L|x − x ′|2,
|b(t, x , µ)− b(t, x , µ′)| ≤ LW2(µ, µ′),

|b(t, x , µ)− b(t, x ′, µ)| ≤ L(1 + |x |q−1 + |x ′|q−1)|x − x ′|,
‖σ(t, x , µ)− σ(t, x ′, µ′)‖L2 ≤ L(|x − x ′|+ W2(µ, µ′)),∫ T

0

(
|b(t, 0, δ0)|+ ‖σ(t, 0, δ0)‖2

L2

)
dt <∞.



Applications: conditions for LDP

(A2) There exist L1, L2, L3 ∈ H∩ L2(ν) such that for all t ∈ [0,T ], x , x ′ ∈ Rd ,
µ, µ′ ∈ P2 and z ∈ Z ,

|G(t, x , µ, z)− G(t, x ′, µ′, z)| ≤ L1(z)
(
|x − x ′|+ W2(µ, µ′)

)
,

|G(t, 0, δ0, z)| ≤ L2(z).

and there exists nonnegative constant %G ,ε converging to 0 such that

sup
(t,x,µ)∈[0,T ]×Rd×P2

|Gε(t, x , µ, z)− G(t, x , µ, z)| ≤ %G ,εL3(z).

(A3) As ε ↓ 0, the maps bε and σε converge uniformly to b and σ respectively,
that is, there exist nonnegative constants %b,ε and %σ,ε converging to 0 as
ε ↓ 0 such that

sup
(t,x,µ)∈[0,T ]×Rd×P2

(
|bε(t, x , µ)− b(t, x , µ)|

)
≤ %b,ε, (20)

sup
(t,x,µ)∈[0,T ]×Rd×P2

(
‖σε(t, x , µ)− σ(t, x , µ)‖L2

)
≤ %σ,ε. (21)

(A4) Pathwise uniqueness holds with J = Law(X ε).



Applications: LDP

For each measurable function g : [0,T ]× Z → [0,∞), define

Q2(g) :=

∫
[0,T ]×Z

`
(
g(s, z)

)
ν(dz)ds,

where `(x) = x log x − x + 1, `(0) := 1. For each m > 0, denote

Sm
2 :=

{
g : [0,T ]× Z → [0,∞) : Q2(g) ≤ m

}
.

Any measurable function g ∈ Sm
2 can be identified with a measure

ĝ ∈ MFC ([0,T ]× Z), defined by

ĝ(A) =

∫
A

g(s, z) ν(dz)ds, ∀A ∈ B([0,T ]× Z). (22)

This identification induces a topology on Sm
2 under which Sm

2 is a compact
space (see the work of Budhiraja-Chen-Dupuis).



Applications: LDP main result

Theorem

The solutions {X ε} satisfy the LDP on D([0,T ],Rd ) with speed ε and the rate
function I given by

I (g) := inf{Q1(φ) + Q2(ψ) : u = (φ, ψ) ∈ S , Y u = g}, g ∈ D([0,T ],Rd ), (23)

where for u = (φ, ψ) ∈ S, Y u is the unique solution to the following equation:

Y u(t) =h +

∫ t

0

b(s,Y u(s), Law(X 0(s)))ds +

∫ t

0

σ(s,Y u(s), Law(X 0(s)))φ(s)ds

(24)

+

∫ t

0

∫
Z

G(s,Y u(s), Law(X 0(s)), z)(ψ(s, z)− 1)ν(dz)ds, t ∈ [0,T ].

(25)

Here we use the convention that the infimum of an empty set is ∞.



Applications: conditions for MDP

For any t ∈ [0,T ] and µ ∈ P2, let b′2(t, x , µ) denote the derivative of b(t, x , µ)
with respect to the variable x .
In order to obtain the MDP, we give the following additional assumptions.

(B1) There are L′, q′ ≥ 0 such that for each x , x ′ ∈ Rd ,

|b′2(s, x , Law(X 0(s)))− b′2(s, x ′, Law(X 0(s)))| (26)

≤L′(1 + |x |q
′

+ |x ′|q
′
)|x − x ′|, (27)

and ∫ T

0

|b′2(t,X 0(t), Law(X 0(t)))|dt <∞.

(B2)

lim
ε→0

%b,ε

λ(ε)
= 0

where %b,ε is given in (A3).



Applications: MDP main result

Theorem

Then {Mε := 1
λ(ε)

(X ε(t)− X 0(t))} satisfies a LDP on D([0,T ],Rd ) with

speed ε/λ2(ε) and the rate function I given by for any g ∈ D([0,T ],Rd )

I (g) := inf
{u=(φ,ϕ)∈L2([0,T ],Rd )×L2(νT ),K u =g}

{1

2

∫ T

0

|φ(s)|2ds +
1

2

∫ T

0

∫
Z

|ϕ(s, z)|2ν(dz)ds
}
,

where for u = (φ, ϕ) ∈ L2([0,T ],Rd )× L2(νT ), K u is the unique solution of the
following equation

dK u(t) = b′2(t,X 0(t), Law(X 0(t)))K u(t)dt + σ(t,X 0(t), Law(X 0(t)))φ(t)dt

+
∫

Z
G(t,X 0(t), Law(X 0(t)), z)ϕ(t, z)ν(dz)dt

K u(0) = 0.

(28)



Thanks for your kind attention!


